Modeling for the rapid development of advanced carbon management technologies

National Energy Technology Laboratory

Carbon Management

Reducing the Carbon Footprint

- Higher Efficiency
- Biomass/Coal Gasification and Fuels Production

Carbon Capture and Separation

- Conventional
- Unconventional

Carbon Storage

- Storage Opportunities
- Interaction with regional partnerships
- Measurement, monitoring, and verification

Risk Assessment

- Long-term reactivity
- Modeling long term behavior
- Incorporation of other systems analysis

CCS Modeling at NETL

Capture Modeling

Plant

- IECM
- Aspen Plus
- APECS

Device

MFIX FLUENT **Atomic Scale VASP** accelrys suite **GAUSSIAN**

System

Sequestration Modeling Reservoir/coal bed

PSU-COALCOMP NFFLOW

Continuum/Pore scale

FLUENT

NETFlow

Geomechanics

SEQURE ABAQUS

NFFLOW TOUGH2

Statistical methods

Transport Gasifier

Summary of Simulation Work for Geologic Sequestration and Related Research

- Development of simulation capabilities for the injection CO₂ into coal seams, particularly related to coal swelling
- Pore-level simulations help understand fundamentals of twophase flow, scaling laws, and capacity predictions
- Fracture flow simulations help understand fundamentals of twophase fracture flow and better model CO₂ sequestration in nontraditional reservoirs, as well as migration through faults and fracture networks
- Geomechanical and flow modeling identifies subsurface regions where additional rock stresses form, as well as help predict sequestration capacities
- Flow modeling and statistical techniques help design monitoring networks and interpret data from them

Quantitative risk assessment is a formal process to minimize potential consequences of long-term storage.

Risk assessment must consider the potential for CO₂ release and subsequent movement from storage reservoir to various receptors.

Goal is to minimize the potential impact to subsurface receptors.

Goal is to minimize the potential impact to surface receptors.

terrestrial ecosystems; subaqueous systems

CO₂-PENS Risk Assessment Framework

Science based prediction of natural system performance requires systemlevel probabilities based on process level phenomena.

Storage Reservoir Factors to Consider in Risk Assessment

Key Features/Events/Processes

- geologic characteristics
 - porosity/permeability
 - lithologic unit(s) (chemistry; mineralogy)
 - geologic structure
 - heterogeneity
 - existing fluids (brine; oil/gas)
- containment characteristics
 - vertical seal(s); horizontal seal(s)
 - storage-unit volume
- long-term reactions
 - dissolution into brine (reverses buoyancy)
 - reaction with reservoir rock (mineralizes)

Factors to Consider

- Injection wells needed; existing injection/water wells
- Displacement of reservoir fluids
- Change in physical conditions
- Insufficient capacity

Current CO₂-PENS Approach

- GIS tool can extract site-specific information from databases (e.g., wellbores, reservoirs, etc.)
- continuum-scale reactive transport DLL
- simplified analytical model for growth of plume and pressure field

Potential Release and Transport Mechanisms to Consider

Key Features/Events/Processes

- wellbore release
 - poor (no) completion
 - corrosion of cement or casing
- release through seal
 - fractures/faults; diffusion
- lateral migration
- fastpath transport (including wellbores)
- porous flow (saturated and unsaturated)

Current CO₂-PENS Approach

- Princeton wellbore model for release/transport
- simple diffusion through seal
- simple capacity overflow for lateral migration
- continuum-scale transport out of reservoir under development

Potential Receptor Impacts to Consider

Key Features/Events/Processes

- resource-reservoir impacts
 - CO₂ migrates to another reservoir (oil, gas, pore space, etc.)
- groundwater impacts
 - CO₂ accumulation followed by waterrock interactions and transport
- atmospheric impacts
 - CO₂ return to the atmosphere
 - mixing in atmosphere affects CO₂ level

Current CO₂-PENS Approach

- tracks CŌ₂ accumulation and migration from wellbore release (Princeton analytical model)
- couples USGS water-rock model (PHREEQ)
- allows boundary-layer mixing in simple analytical solution with local metereological conditions drawn from database

Virtual Power Plant with Carbon Management

